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Sintering behaviour of powder compacts with 
mu Iti heterogeneities 
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Department of Materials Science and Mineral Engineering, University of California, Berkeley, 
California 94720, USA 

The sintering behaviour of a powder compact containing uniformly distributed heterogeneities 
has been analysed. The results reveal a strong retardation of sintering in the presence of non- 
sinterable agglomerates, due to the development of a uniform hydrostatic tensile stress in the 
powder matrix. The variation in stresses and sintering rate depends strongly on the total vol- 
ume fraction of heterogeneities especially when the volume fraction is small, but is insensitive 
to the actual number of heterogeneities. Specific results are calculated using densification and 
deformation laws pertinent to AI2Oa. 

1. I n t r o d u c t i o n  
Heterogeneities in a green compact typically sinter at 
different rates than the host powder and thereby exert 
several influences on the sintering body. In particular, 
stresses develop in association with the differential 
shrinkage characteristics of the heterogeneity. The 
stresses may cause sintering damage, such as crack- 
like flaws, planar array of  voids or isolated pores [1-4]. 
Additionally, residual stresses may remain after den- 
sification. Both effects tend to limit the mechanical 
strength of  the sintered body. The heterogeneities also 
influence the net sintering rate of  the compact. Some 
of the important trends in stress development and 
sintering rates have recently been determined for 
isolated heterogeneities [5] and multiheterogeneities 
with finite volume fraction [6, 7]. Distinction between 
the two models concerns the differing tendency toward 
the development of hydrostatic stress. Appreciable 
hydrostatic stress develops in the matrix as the volume 
fraction of heterogeneities increases. Furthermore, 
when the heterogeneities have lower sintering rates 
than the matrix, the hydrostatic stress in the matrix is 
tensile in nature, whereupon the sintering rate is pro- 
foundly reduced. 

The model for the multiheterogeneity problem [7] 
was based on the premise that the volume fraction of  
heterogeneities is small (<  0.1). As a complement to 
the previous studies [5, 7], an analysis dealing with an 
explicit number of heterogeneities having finite vol- 
ume fraction is considered in the present study. To 
achieve this, a single heterogeneity in the host with 
finite volume fraction is considered first and then 
extended to larger numbers of  heterogeneities. The 
present analysis deals specifically with non-sinterable 
heterogeneities, typically hard agglomerates, but the 
method is general and can be applied to any initial 
heterogeneity. 

2. Stress analysis 
To solve the stress distribution in a powder compact, 
it is necessary to choose a simple model, which retains 

the essential features of the problem. The model 
chosen in the present study assumes the heterogeneity 
is spherical, and is large enough for the powder matrix 
to be viewed as a continuum solid. Thus, the analysis 
can be based upon a continuum solution of  a misfit- 
ting inclusion in a matrix [8]. 

2.1. Single heterogeneity 
As shown in Fig. la, the spherical heterogeneity is 
assumed to have a radius, a, and the powder matrix 
surrounding the heterogeneity has an outer radius, b. 
The volume fraction of the heterogeneity,f,  is given by 

f = ( l )  

The powder compact is susceptible to viscoelastic 
deformation during sintering. Thus, stress develop- 
ment during sintering is treated as a viscoelastic prob- 
lem, wherein the elastic streses are first assessed and 
then transformed into the time dependent viscoelastic 
solution [5-7]. The elastic stresses are determined by 
the procedure of  firstly allowing the two constituents 
to exhibit an unconstrained differential shrinkage. 
Then, equal but opposite radial tractions, a, are 
placed around the surfaces in order to restore dis- 
placement continuity at the interface. For  a spherical 
zone, the solution is well known. Nevertheless, the 
essential procedural steps are briefly described. 

The radial and hoop stresses within the spherical 
heterogeneity subject to the surface traction, o-, is 
given by [9] 

a,(r) = ao(r) = o-~(r) = o- (2) 

while the corresponding stresses in the matrix are [9] 

o-a3(b 3 -- r 3) 
at(r) - r3(b 3 _ a3 ) (3a) 

o-a3(2r 3 + b 3) 
~ro(r ) = %(r )  = 2r3(b3  _ a3 ) (3b) 

where r is the distance from the centre of  the compact 
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Figure 1 Schematic showing (a) a single 
spherical heterogeneity, and (b) n unisized 
heterogeneities distributed uniformally in 
the powder compact. 

(o) Single Heterogeneity (b) Multiheterogeneities 

and 0, 4 are the polar and azimuthal angles, respec- 
tively. Furthermore, the hydrostatic stresses in the 
heterogeneity, o-h, and the matrix, o-m, can be derived 
from Equations 2 and 3 such that 

o.h(r) = O- (4a) 

o.m(r) = -- o.f/(1 -- f )  (4b) 

It is noted that the hydrostatic stresses are uniform in 
both the heterogeneity and the matrix (Equation 4) 
and satisfy the relation 

o'hf + o-m(1 - -  f )  = 0 (5) 

The interface stress, 0., and hence the hydrostatic stress 
o'h and o.m are dictated by the boundary conditions,as 
shown in the following. 

The total strain within the heterogeneity is the sum 
of the elastic and the shrinkage strains, such that, 

e~ a(1 - 2Vh) 
- + eh ( 6 )  

eh 

where Eh and Vh are the Young's modulus and 
Poisson's ratio, respectively, and eh is the shrinkage 
strain due to sintering of the heterogeneity. Similarly, 
the total strain within the matrix can be expressed as 

- -  o - a  3 

~'(r) = 2Emr3(b 3 - a 3) 

x [2r 3 4- b 3 + vm(b 3 - 4r3)] 4- Sm (7) 

The interface traction, 0., can be determined from the 
strains, subject to the requirements that the displace- 
ments be continuous at the interface 

u~(r) = urn(r) (r = a) (8a) 

such that 

Substitution 
yields 

e#(r) = e~'(r) (r = a) (8b) 

of Equations 6 and 7 into Equation 8b 

O" = (~S m - -  ~h)/(3-~h 4- 1 1 ,0 1 f ) _ _  
4G m 1 - J 4 -  3Km 1 

(9) 

where K and G are the bulk and shear moduli, respect- 
ively. In the case of non-sinterable hard heterogene- 
ities [10], wherein eh = 0 and Kh ~ o% Equation 9 
reduces to 

/ (4Ym f) (10) o. = [ e r a ( 1  - -  f ) ]  4- 

and the hydrostatic stresses in the heterogeneity and 

matrix can be derived from Equations 4 and 10 such 

o-h = [em(l --f)]/(~Gm+ f ) (lla) 

o'm = --era + ( l lb)  

that 

2 . 2 .  Multiheterogeneit ies 
The single heterogeneity is subdivided into n equal- 
sized heterogeneities with volume fraction f in  for each 
individual heterogeneity and distributed uniformly in 
the powder compact (Fig. lb). The stress distribution 
in the multiheterogeneity problem is complex, and a 
rigorous stress analysis requires extensive numerical 
computation. An approximate solution is thus sug- 
gested, which permits both the identification of the 
important multiheterogeneity effects and elucidates 
the essential trends. To achieve this, it is assumed that 
the effect of the location of the heterogeneity and 
of the interaction between heterogeneities can be 
ignored. The hydrostatic stress in the matrix derived 
from each individual heterogeneity, o-ml, is thus 

/(4 O'ml  = ( - -  s + ~ ( 1 2 )  

and the resultant hydrostatic stress in the matrix due 
to the n heterogeneities is 

/(4+m --I o-m = - -  /3 m Jr-  3 K  m n 

while the corresponding hydrostatic stress in hetero- 
geneity is 

/ ( 4 +  m 1 f )  o-h = [em(m - f ) ]  + ~ (13b) 

These elastic stresses are converted into the equivalent 
viscoelastic stresses in the following section. 

2.3. Viscoelas t ic  s t resses  
The viscoelastic stress determinations adopt the usual 
assumptions that the deformation satisfies a Maxwell 
model. The viscoelastic stress can be determined from 
the elastic stress by applying Laplace and inverse 
Laplace transforms [7], such that the viscoelastic 
hydrostatic stress in heterogeneities and matrix are 

12KmGm(1 - -  f ) .  
O ' h ( t  ) = f 0  . . . . .  /3 m 

3Km + 4Gin f in  

F - - 3 K m G m ( t - - u )  ~ d u  (14a) 
x exp [_(3Km + 4Gmf/n)qmJ 
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Figure 2 Plot of normalized interface stress as a function of 
time at different volume fraction of heterogeneities, f, for 

o~/~r = 0.5 and n --, oo. 

and 

flm(t) 
- 12KmGmf . Ft 

= J0 . . . .  grn 3Kin + 4Gmf/n 

F - 3 K m G m ( t - u )  -]_, 
x exp L(3~-  ~ ~ 4-G-~-mf~-~-~mJOU (leb) 

where t and ~7 are time and viscosity, respectively. 
Furthermore, when the volume fraction of the 
heterogeneities, f ,  is small or the number, n, is large, 
Equation 14 can be simplified to 

flu(t) = fs 4Gin(1 - f)~m exp [-- Gm(t - -  b/)/~m ]du 

(15a) 

tim(t) = f0 - 4 G r a f t  m exp [ -  Gm(t  - u ) / r lm]du  

(15b) 

Determination of the residual stress is thus contingent 
upon the shrinkage rate of the matrix, ~m, as well as 
the parameters Gm, K m and qm" Stress solutions may 
thus be obtained by incorporating density dependent 
constitutive laws for each of these variables into 
Equations 14 and 15 and integrating. Specific results 
obtained for A1203 are presented in the subsequent 
section, using a finite difference scheme. 

2.4. Constitutive laws  
The various constitutive laws describing the behaviour 
of the porous sintering body have previously been 
established using formulae based on models of sinter- 
ing and creep in conjunction with typically encountered 
experimental characteristics [5]. 

B (1 0/0f) I+1/r 
0/er = ~ (1 - fire/Z) (16a) 

(1 Oo/Qf) lm 

rt = A(Q/~S)a(1 - 0/~S) -1'~ (16b) 

G = G0{1 + B(1 -- Q/Q/)[1 -- (B + 1) 

x (1 - -  ~ / ~ ) f ) ] - l }  (16c) 

K = Ko{1 -t- B(1 - 0 /0f ) [1  - (B  + I )  

X ( 1  - -  O / ~ ) f ) ] - - l }  (16d) 

= - 0 / 3 ~  (16e) 

where ~0 and ~j are the initial and final densities, 
respectively, Z is the sintering stress and fi, r, 6, A and 
B are coefficients obtained by fitting Equation 16 to 

experimental data. Data for A1203 are used for present 
purposes (Table I) [5]. 

3. Results 
Heterogeneities with limited sinterability substantially 
reduce the net sintering rate of the compact, because 
compressive stress develops at the interface when the 
powder matrix sinters and shrinks, which in turn 
induces hydrostatic tension in the powder matrix 
(Equation 4b) and opposes the sintering stress (Equa- 
tion 16a). 

The trends in the interface stress induced by a large 
number of non-sinterable heterogeneities (Equation 
15a) are plotted in Fig. 2. Evidently, the peak stress 
diminishes and persists for longer times as the volume 
fraction of the heterogeneities increases. The specific 
variation in the peak interface stress with volume 
fraction of heterogeneities is plotted in Fig. 3. The 
corresponding peak hydrostatic tension in the powder 
matrix is plotted in Fig. 4. It is noted that the hydro- 
static tension is limited by the sintering stress of the 
powder matrix because sintering stops when the 
hydrostatic tension approaches the sintering stress. The 
opposite trends in flu and o m with respect to f (Figs 3 
and 4) arise because these stresses are interrelated 
through f,  as expressed by Equation 5, such that 
flm --+ 0 as f - - .  0. 

Specific trends in the density with time and 
heterogeneity concentration are illustrated in Fig. 5. 
It is evident that the sintering rates are substantially 
reduced by the heterogeneities, even when f is small 
(i.e. of order 0.01) as observed experimentally [10], 
where the density of the powder compact of ZnO, with 
initial grain size ~ 0.4 pm and sintered at 700 ~ C, were 
drastically reduced by the addition of uniformly dis- 
persed, hard and coarse-grained ( ~  12/1m) SiC par- 
ticles (Fig. 6) [10]. The effect is most pronounced for 

T A B L E  I Parameters for A1203 at Q0/r = 0.5 and T = 1500~ 

Parameter Value 

/3 0.6 
r 190.5 sec 
Z 1.5 MPa 
A 100 GPa sec 
6 0.5 
G O 50 GPa 
K 0 130 GPa 
B 3.2 

2 0 6 9  
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Figure 3 P l o t  o f  normalized peak interface stress as a 

function of volume fraction of heterogeneities for 
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Figure 4 P l o t  o f  normalized peak matrix hydrostatic stress as a 

function of volume fraction of heterogeneities for Q~/Qr = 0.5 and 
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intermediate times, as exemplified by plotting the ratio 
of the net density change in the matrix, A0, to the 
equivalent density change in the absence of hetero- 
geneities, AQ0 (Fig. 7). Such temporal densification 
characteristics obtain because hydrostatic tensile 
stress develops after an initial period of densification 
(see Fig. 2), whereupon the matrix sintering rate is 
retarded and the densification rate exhibits an initial 
decrease. However, at longer time periods, the sinter- 
ing rate differential diminishes and the stress tends to 
be relaxed by viscoelastic deformation of the matrix 
[5], thereby allowing the relative densification rate to 
increase and, eventually, approach uni{y (Fig. 7). 

It is worthwhile to note the importance of the rela- 
tionships evident in Figs 3 5 on the microstructural 
development of the powder compact. While the reduc- 
tion of the sintering rate in the powder matrix is 
smaller with lower volume fraction of non-sinterable 
heterogeneities, it can nevertheless lead to higher 
interface compressive stresses, which in turn induce 
higher circumferential tensile stresses in the powder 
matrix (Equation 3) and cause sintering damage. Con- 
versely, higher volume fraction of non-sinterable 
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FLgure 5 Plo t  o f  relative matrix density as a function o f  
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Figure 6 Density as a function of time for ZnO containing different 
volume fraction of SiC (courtesy of M. N. Rahaman). 

heterogeneities leads to lower interface stress, but it 
severely reduces the sintering rate of  the powder 
matrix and yields a weak, porous matrix. Conse- 
quently, close control of  the heterogeneity content is 
important  in the realization of the maximum sin- 
terability of  a powder compact.  

The effects of  the number  of  heterogeneities (with 
fixed total volume fraction) on the sintering behaviour 
of  the compact  are also studied. It  is shown in Equa- 
tion 14 that the effects can be ignored when the volume 
fraction, f ,  is small or the number, n is large. However, 
the hydrostatic stresses increase as n increases and the 
variation vanishes after an initial period of sintering, 
such that the peak stress is independent of  n, as shown 
in Fig. 8. The relative density change as a function of 
time is shown in Fig. 9. It can be seen that the densifi- 
cation rate shows an initial decrease with increase in n 
and then become independent of  n, consistent with the 
trends in the hydrostatic stress (Fig. 8). 

4. C o n c l u d i n g  r e m a r k s  
A distribution of non-sinterable heterogeneities in a 
powder compact  is shown to decrease the sintering 
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rate by inducing hydrostatic tensile stresses in the 
powder matrix. The effects are most pronounced at 
relatively small volume fractions,f, of heterogeneities. 
The actual number of heterogeneities, n, influences the 
sintering behaviour only during the initial period, 
such that the hydrostatic tensile stress increases and 
the sintering rate decreases with increase in n. Further- 
more, the effects of n on stresses and sintering rate can 
be ignored for small volume fractions or for a large 
number of heterogeneities. 

The specific results generated in the present study 
are for A1203 powder matrix containing non-sinter- 
able heterogeneities. However, the procedure is 
general in nature and can be used to predict sintering 
behaviour of any powder compact containing 
heterogeneities, by using Equation 14 and incorpor- 
ating density dependent constitutive laws for each 
variable. The trends revealed in this study are expected 
to be obtained for other materials, albeit that the 
specific stress levels must be material dependent. 
Improved computations await additional sintering 
and creep rate data. 
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